

Product Specification

PART NUMBER # REV: FLC-101HMLC000SA1#00

DESCRIPTION:	TFT 10.1", 1280(H)*800(V), LVDS,
	Full View, 350CD
()	Preliminary Specification
(\/)	Annroyed Specification

Customer Name:	
Signature:	Date:

PREPARED BY	REVIEWED BY
Ellen Chen	David

Revision History

Version	Date	Page	Description	Note
V1.0	2021/05/20		1st Edition	
			× Vo	
	<u> </u>			
	X			

Table of Content 2. ABSOLUTE MAXIMUM RATING......5 3.3 Input Power Specifications9

1. GENERAL DESCRIPTION

1.1 Description

10.1 inch is a Color Active Matrix Liquid Crystal Display Module composed of a Round TFT LCD panel and LED backlight system. The screen format is intended to support the 1280 x 800 screen and 16.7M colors.

1.2 Product Summary

The following items are summary on the table under Ta=25 °C condition:

No.	ltem	Specification	Unit
1	Display Size	10.1"W	Inch
2	Display Format	1280(H) x (R,G,B) x 800(V)	Dots
3	Outline Dimension (H x V x D)	229.46 × 149.1 × 2.8 (Min.) 229.46 × 149.1 × 4.56 (Max.) PCB Zone	mm
4	Active Area	216.96 x 135.60	mm
5	Pixel Pitch	0.1695 × 0.1695	mm
6	Support Color	16.7 M	
7	Display Mode	Normally Black	
8	Electrical Interface	LVDS	
10	Brightness	350 (Тур)	cd/m2
11	Viewing Direction	All	
12	Contrast Ratio	800 (Typ.)	
13	Input Voltage	3.3 (Typ.)	V
14	Response Time	25(Typ.)	W
15	Surface Treatment	Glare, Hard-Coating 3H	

2. ABSOLUTE MAXIMUM RATING

2.1 Electrical Absolute Rating

Itam	Itam Symbol		Values		l lni+	NI-+-	
ltem	Symbol	Min	Тур	Max	Unit	Note	
Power Supply Voltage	VDD	-0.3	-	4.0	V		
Logic Input Signal Voltage	Vsignal	-0.3	-	4.0	V		

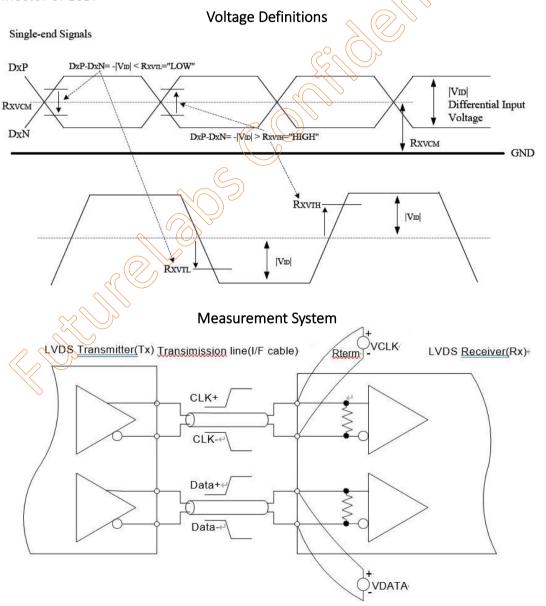
2.2 Environment Absolute Rating

ltom	Symbol		Values			Note
ltem	Symbol	Min	Тур	Max.	Unit	Note
Operating Temperature	Тор	-20	ı	+70	> °C	
Storage Temperature	Tstg	-30	- 00	+80	°C	

- * Note 1: All the parameters specified in the table are absolute maximum rating values that may cause faulty operation or unrecoverable damage, if exceeded. It is recommended to follow the typical value.
- * Note 2: Operating temperature 25°C, humidity 55%RH,
- * Note 3: Unpredictable results may occur when it was used in extreme conditions. Ta= Ambient

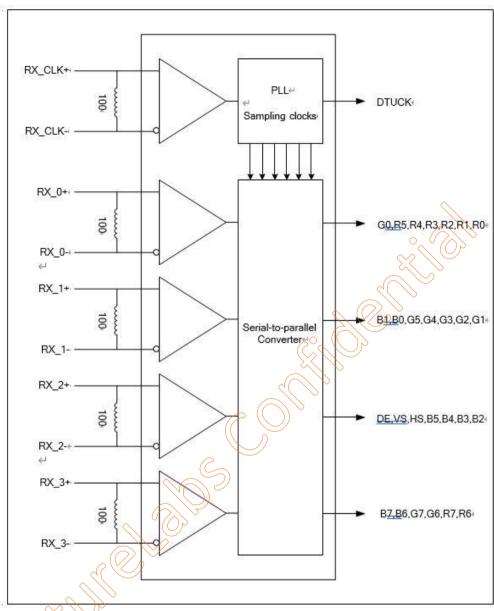
 Temperature, Tgs= Glass Surface Temperature. All the display fineness should be inspected under normal conditions.
- * Note 4: Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be lower than 57.8°C, and no condensation of water. Besides, protect the module from static electricity.

3. Signal Electrical Characteristics

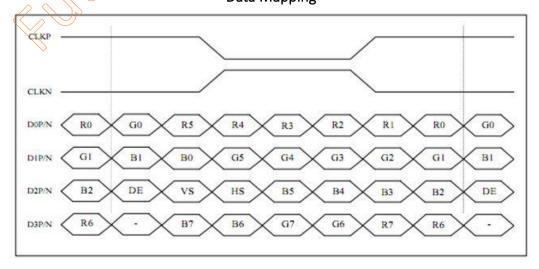

3.1 Signal Electrical Characteristics for LVDS Receiver

The built-in LVDS receiver is compatible with (ANSI/TIA/TIA-644) standard.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Differential Input High Threshold	V_{th}	-	-	+100	mV	V _{CM} =+1.2V
Differential Input Low Threshold	V_{tl}	-100	-	-	mV	V _{CM} =+1.2V
Input voltage range(singled-end)	RXVIN	0.7		1.7		-
Magnitude Differential Input Voltage	V _{ID}	200	-	600	mV	-
Common Mode Voltage	V _{CM}	1	1.2	1.4	V	VID =0.2


^{*} Note 1: Input signals shall be low or Hi- resistance state when VDD is off.

* Note 2: All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.



LVDS Receiver Internal Circuit

Data Mapping

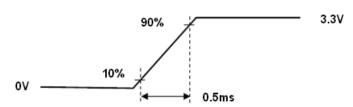
3.2 Interface Timings

Parameter	Symbol	Unit	Min.	Тур.	Max.
LVDS Clock Frequency	Fclk	MHz	70.0	72.4	76.6
Horizontal Total Time	HT	Clocks	1,410	1,440	1,470
Horizontal Active Time	HA	Clocks		1280	
Vertical Total Time	VT	Lines	828	838	868
Vertical Active Time	VA	Lines		800	
Frame Rate	FV	Hz	-	60	-

Note 1: HT * VT *Frame Frequency≤(76.6) MHz

Note 2: All reliabilities are specified for timing specification based on refresh rate of 60Hz

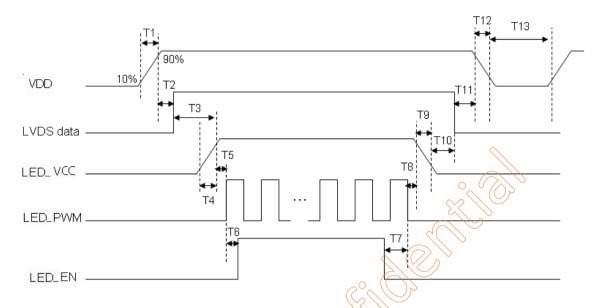
3.3 Input Power Specifications


Input power specifications are as follows.

Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
	Syste	m Power	Supply				
LCD Drive Voltage (Log	gic)	V_{DD}	3.0	3.3	3.6	V	Note 1, 2, 3
VDD Current	TBD	I _{DD}	-	-	TBD	А	Note 1.4
VDD Power Consumption	TBD	P_{DD}	1	ı	TBD	W	Note 1,4
Rush Current		I _{RUSH}	-	-	1.5	А	Note 1,5
Allowable Logic/LCI Drive Ripple Voltage		V _{VDD-RP}	-	-	300	mV	Note 1
		LED	Power Sup	ply	0 (
LED Input Voltage		V_{LED}	6	12	21	> V	Note 1, 2
LED Power Consumpt	ion	P _{LED}	-	-	2.5	W	Note 1, 6
LED Forward Voltag	е	V _F	2.8	- 🔪	3.3	V	
LED Forward Curren	t	I _F	ı	20	-	mA	
PWM Signal Voltage	High	V	3.0		3.6	V	Note 1
P WWW Signal Wollage	Low	V _{PWM}	0	\\ -	0.4		Note 1
LED Enable Voltage	High	V. 55. 51.	3.0	-	3.6	V	
LLD LITABLE VOITAGE	Low	V _{LED_EN}	0)	-	0.4	V	
		\mathbb{C}	100	-	200		DDIM≥ 0.1%
			200	-	500		DDIM≥ 0.25%
	(500	-	1000		DDIM≥ 0.5%
Input PWM Frequency	FPWM	F _{PWM}	1000	-	2000	Hz	DDIM≥ 1%
input i wivi i requeitly		I PWM	2000	-	5000	112	DDIM≥ 2.5%
			5000	-	10000		DDIM≥ 5%
)		10000	-	20000		DDIM≥ 10%
			20000	-	30000		DDIM≥ 15%
Duty Ratio		PWM	5		100	%	Note 1, 8
LED Life Time		LT	20000	30000	-	Hours	Note 1, 8

- Note (1) All of the specifications are guaranteed under normal conditions. Normal conditions are defined as follow: Temperature: 25° C, Humidity: 55^{\pm} 10%RH.
- Note (2) All of the absolute maximum ratings specified in the table, if exceeded, may cause faulty operation or unrecoverable damage. It is recommended to follow the typical value.
- Note (3) The specified VDD current and power consumption are measured under the VDD = 3.3 V, FV = 60 Hz condition and TBD pattern.
- Note (4) The figure below is the measuring condition of VDD. Rush current can be measured when TRUSH is 0.5 ms.

VDD Rising Time



- Note (5) The power consumption of LED Driver are under the VLED = 12 V, Dimming of Max luminance.
- Note (6) Although acceptable range as defined, the dimming ratio is not effective at all conditions. The PWM frequency should be fixed and stable for more consistent luminance control at any specific level desired.
- Note (7) The operation of LED Driver below minimum dimming ratio may cause flickering or reliability issue.
- Note (8) The life time is determined as the sum of the lighting time till the luminance of LCD at the typical LED current reducing to 50% of the minimum value under normal operating condition.

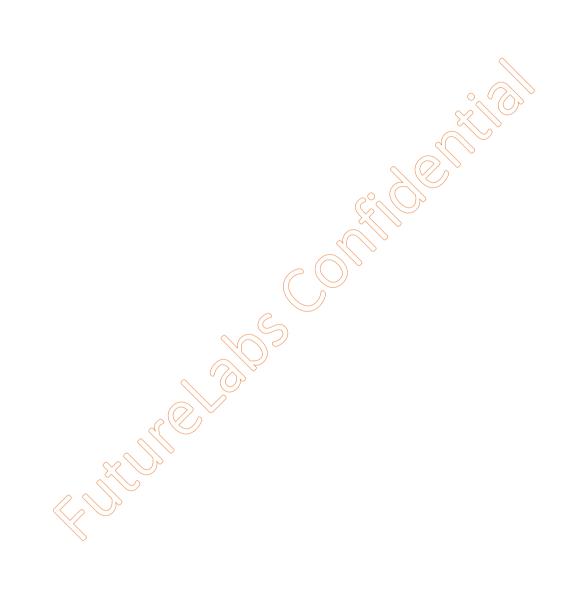
3.4 Power ON/OFF Sequence

Interface signals are also shown in the chart. Signals from any system shall be Hi- resistance state or low level when VDD voltage is off.

Power Sequencing Requirements

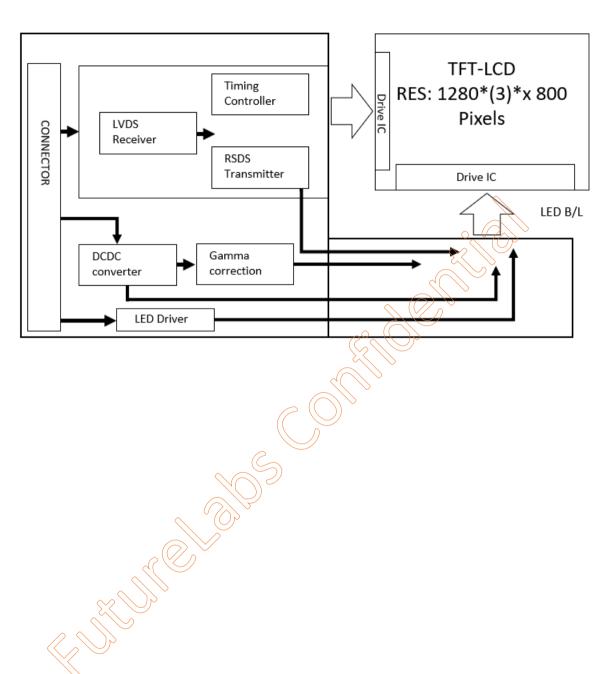
1 0 11 0 11 0 11								
Parameter	Symbol	Unit	Min	Тур.	Max			
VDD Rise Time (10% to 90%)	T1)	ms	0.5		10			
VDD Good to Signal Valid	T2	ms	30		90			
Signal Valid to Backlight On	T3	ms	200					
Backlight Power On Time	T4	ms	0.5					
Backlight LED_VCC Good to System LED_PWM On	T5	ms	10					
System LED_ PWM On to Backlight LED_EN On	Т6	ms	10					
Backlight LED_ EN Off to System LED_PWM Off	Т7	ms	0					
System LED_ PWM Off to B/L Power Disable	Т8	ms	10					
Backlight Power Off Time	Т9	ms	0.5	10	30			
Backlight Off to Signal Disable	T10	ms	200					
Signal Disable to Power Down	T11	ms	0		50			
VDD Fall Time	T12	ms	0.5	10	30			
Power Off	T13	ms	500					

4. INTERFACE PIN DESCRIPTION


4.1 LCM Connector PIN Assignment

The electronics interface connector is IPEX 20455-040E-66 or equivalent.

Pin	Symbol	Function	Note
1	NC	No Connection	
2	VDD	Power Supply	
3	VDD	Power Supply	
4	NC	No Connection	
5	NC	No Connection	
6	NC	No Connection	
7	NC	No Connection	
8	LVON	-LVDS Differential Data Input	
9	LVOP	+LVDS Differential Data Input	
10	GND	Ground	
11	LV1N	-LVDS Differential Data Input	
12	LV1P	+LVDS Differential Data Input	
13	GND	Ground	
14	LV2N	-LVDS Differential Data Input	
15	LV2P	+LVDS Differential Data Input	
16	GND	Ground	
17	LVCLKN	-LVDS Differential Clock Input	
18	LVCLKP	+LVDS Differential Clock Input	
19	GND	Ground	
20	LV3N	LVDS Differential Data Input	
21	LV3P	+LVDS Differential Data Input	
22	GND	Ground	
23	LED_GND	Ground for LED Driving	
24	LED_GND	Ground for LED Driving	
25	LED_GND	Ground for LED Driving	
26	NC	No Connection	
27	LED_PWM	PWM Input Signal for LED Driver	
28	LED_EN	LED Enable Pin	
29	NC	No Connection	
30	NC	No Connection	
31	LED_VCC	Power Supply for LED Driver	
32	LED_VCC	Power Supply for LED Driver	
33	LED_VCC	Power Supply for LED Driver	
34	NC	No Connection	



Pin	Symbol	Function	Note
35	NC	No Connection	
36	NC	No Connection	
37	NC	No Connection	
38	NC	No Connection	
39	NC	No Connection	
40	NC	No Connection	

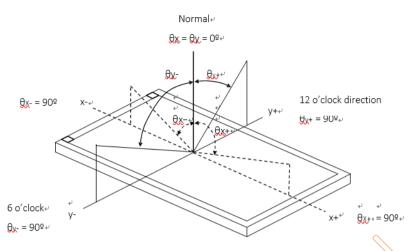
5. BLOCK DIAGRAM

<u>www.futurelabs.asia</u> Page 14

6. OPTICAL CHARACTERISTIC

The optical characteristics are measured under stable conditions at room temperature.

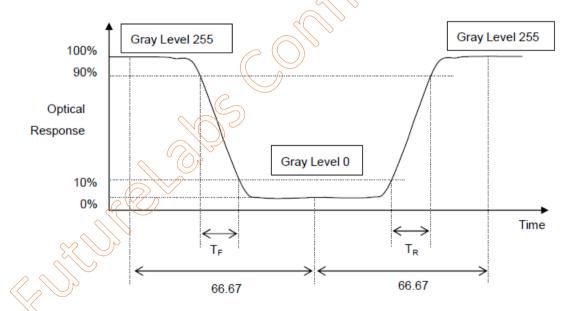
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
Contrast Ratio		CR	θ _X =0°	600	800	-	-	(2)(5)	
Response Time		TR+TF	25°C	-	25	50	ms	(3)	
Center Luminance of White		LC		300	350	-	cd/m2	(4)(5)	
Brightness Uniformity				70	75	-	%		
	Dod	Rx		Typ. 0.03	TBD	Typ. +0.03	-		
	Red	Ry			TBD		-		
	Green	Gx	$\theta_X=0^\circ$, $\theta_Y=0^\circ$		TBD		-		
Chromaticity		Gy	Viewing angle at normal direction		TBD		-	(1)	
	Blue	Вх			TBD		-	(5)	
		Ву			TBD		-		
	White	Wx			0.313		-		
		Wy			0.329		-		
Viewing Angle	Horizontal	θχ+		75	85	-			
		θχ-	CR=10	75	85	-	Dog	(1)(5)	
	Vartical	θγ+	∨ CK=10	75	85	-	Deg.		
	Vertical	д Фү-		75	85	-			


The following optical specifications shall be measured in a darkroom or equivalent state (ambient luminance <2 lux, and at room temperature).

The room temperature is 25°C±2°C.

Note 1: Definition of Viewing Angle

Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or the vertical clock direction with respect to the optical axis which is normal to the LCD surface.

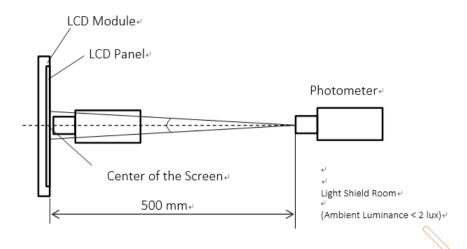


Note 2: Definition of Contrast Ratio (CR)

Measure the viewing angle of Θ = 0 and at the center of the LCD surface. Luminance with all pixels in white state divide by Luminance with all pixels in Black state

Note 3: Definition of Response Time:

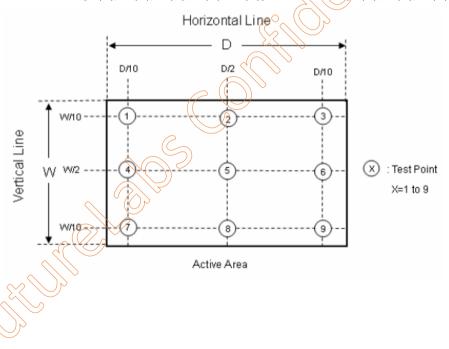
The response time is set initially by defining the "Rising Time (TR)" and the "Falling Time (TF)" respectively. Please refer the figure to the followings:


Note 4: Definition of Brightness (L)

Measure the center area of the panel and the viewing angle of the $\theta x = \theta y = 0^{\circ}$

Note 5: The method of optical measurement:

<u>www.futurelabs.asia</u> Page 16



Note 6: Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L(1), L(2), L(3), L(4)^{\sim} L(9)] / Minimum [L(1), L(2), L(3), L(4)^{\sim} L(9)]$

7. RELIABILITY TEST

Test Item	Operating Mode	Temperature / Humidity	Condition				
High Temperature / High Humidity Test	Operating	60°C / 90%RH	240 hrs				
High Temperature Test	Operating	70°C	240 hrs				
Low Temperature Test	Operating	-20°C	240 hrs				
High Temperature Test	Storage	80°C	240 hrs				
Low Temperature Test	Storage	-30°C	240 hrs				
Shock Test	Non- Operating	Room Temperature	(1) 240G (2) 2ms (3) 1 (time for ±X, ±Y, ±Z 6 Directions				
Vibration Test	Non- Operating	Room Temperature	(1) 1.5G (2) 10~500Hz (3) X, Y, Z each axis/1hour.				

- Note (1) A sample can only have one test. Outward appearance, image quality and optical data can only be checked at normal conditions according to the document before reliable test. Only check the function of the module after reliability test.
- Note (2) The setting of electrical parameters should follow the typical value before reliability test.
- Note (3) During the test, it is unaccepted to have condensate water remains. Besides, protect the module from static electricity.
- Note (4) The sample must be released for 24 hours under normal conditions before judging. Furthermore, all the judgment must be made under normal conditions. Normal conditions are defined as follow: Temperature: 25°C, Humidity: 55± 10%RH. Ta= Ambient Temperature, Tgs= Glass Surface Temperature.

Note (5) The module should be fixed firmly in order to avoid twisting and bending.

<u>www.futurelabs.asia</u> Page 18

8. OUTLINE DIMENSION

Front VIEW Back VIEW 229.46±0.5 (LCD O.D.) (3.7)219.56±0.3 (Bezel opening) 216.96±0.3 (Active Area) 2.5±0.3 113.48 149.1±0.5 (LCD 0.D.) NOTE: 1. General Tolerance is ±0.5 2. LVDS Connector model: IPEX 20455-040E-66 or equivalent. 3. For RoHS.

4. Brightness: 350 cd/m² (Typ.)
5. Contrast Ratio: 800 (Typ.)

Customer Approval			Part Number						FLC-101HMLC000SA1 #00 ⊕ €					
Date		Rev.	Dute	Person.	Description								_	
Company		01	20200410	Kevin	Upcate LVI	Upcate LVDS connector PinVI into dowing								_
Name		02	20200806	Man	Modžfy bezo	Modify bezel dimension, add connector pin define								
		08	20201014	Matt	Correct connector PIN define					_		_		
1		04	20201025	Matt	Correct connector PIN define and LCM PIN									
1		05	20201026	Matt	Correct LCS	Correct LCM P/N								=
1		06	20210520	Matt	Connect connector PfN									
Signature				Date	Design By	Date	Check By	Date	Approved By					
1		Pirst	Drawing	20201023	Max									

9. PRECAUTION AND PRODUCT HANDLING

- Do not apply the external force such as bending or twisting to the LCD panel and backlight during assembly.
- Do not insert and plug out the input connector while the LCD panel is operating.
- Do not take apart the panel or frame from LCD module assembly or insert anything into the backlight unit.
- Do not keep the same pattern in a long period of time, it may cause image sticking on LCD panel. Can use shuffle content periodically if fixed pattern is displayed on the screen.
- Do not touch the display area with bare hands, this will stain the display area.
- Pay attention to handle lead wire of backlight, that is not tugged in connect with LED driver.
- Do not change variable resistance settings in LCD panel, it may cause not satisfy of LCD characteristics specification.
- The surface of LCD panel's polarizer is very soft and easily scratched, please use a very soft dry cloth without chemicals for cleaning.
- To avoid the static electricity to damage the CMOS LSI, the operator should be grounded when in contact with the CD panel, and also to all electrical equipment.
- Need to follow the correct power frequency when LCD panel is connecting and operating, this can avoid damage to CMOS LSI during latch-up.
- Need to store the LCD panel indoor without the exposure of sunlight where the temperature is 25°C ± 5°C and the humidity is below 60% RH.