

TFT Product Specification

- ◇ PRELIMINARY SPECIFICATION
- APPROVED SPECIFICATION

Part Number FLD-150GML60PCSA1

Description: TFT 15" 1024*768 Full View LVDS 1000CD with LED driver + Rocktouch PCAP 3mm Black USB – I2C

Customer Name:	
Signature:	Date:

PREPARED BY	REVIEWED BY
Mia	David

Revision History

_

Version	Date	Page	Description	Note
V1.0	2022/04/24		1 st Edition	
				$\langle \cdot \rangle$
			A A A A A A A A A A A A A A A A A A A	

TFT Product Specification	
1. GENERAL DESCRIPTION	
1.2 Product Summary	
2. ABSOLUTE MAXIMUM RATING	5
3.1 LCM Power Specification 3.2 Backlight Unit 3.3 COLOR DATA INPUT ASSIGNMENT	
4. SIGNAL CHARACTERISTICS	
4.1.1 Timing Characteristics: 4.1.2 Power ON/OFF Sequence 4.1.3 SCANNING DIRECTION	10 10 13 14
5. INTERFACE PIN DESCRIPTION	
5.2 Backlight and LED Driver Connector PIN Assignment	15 17
6. BLOCK DIAGRAM	
7. OPTICAL CHARACTERISTIC	
8. DIMENSION AND DRAW	
9. PRECAUTION AND PRODUCT HANDLING	

1.1 Description

15"W is a Color Active Matrix Liquid Crystal Display Module composed of a TFT LCD panel and LED backlight system. The screen format is intended to support FHD, 1024x768 screen and 16.2M/262K colors.

1.2 Product Summary

No.	ltem	Specification	Unit
1	Display Size	15"	Inch
2	Pixel Number	1024 (H) x RGB x 768 (V)	Pixels
3	Outline Dimension	370.1 (H) × 294.1(V) × 16.4(D)	mm
4	Active Area	304.1 (H) × 228.1 (V)	mm
5	Display Colors	262K/16.2M	
6	Pixel Arrangement	RGB vertical stripe	
7	Display Mode	Normally Black	
8	Electrical Interface	1 Ch LVDS	
9	Surface Treatment	Hard coating , Anti-Glare 3H	
10	Brightness	(1,000 (Typ.)	cd/m2
11	Contrast Ratio	2,000 (Typ.)	
12	Total Power	20.46	W
	Consumption (Typ)		

The following items are summary on the table under Ta=25 °C condition:

2. ABSOLUTE MAXIMUM RATING

2.1 Electrical Absolute Rating

TFT-LCD				
ltem	Symbol	Min	Max. Unit	Note
Power Supply Voltage	VCC	-0.3	4 V	(1)
			\sim $//$ \diamond	

BACKLIGHT UNIT

ltem	Symbol	Min 🥜	Max.	Unit	Note
LED Drive Voltage	Vi	10.8	13.2	V	(1/2)
Enable Voltage	EN		5.5	V	
Backlight Adjust	Dimming		5.5	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions. Note (2) Specified values are for lamp (Refer to 3.2 for further information).

2.2 Environment Absolute Rating

ltem	Symbol	Min	Max	Unit	Note
Operating Temperature	Тор	-20	70	°C	Ta=25℃
Storage Temperature	(TST)	-30	70	°C	

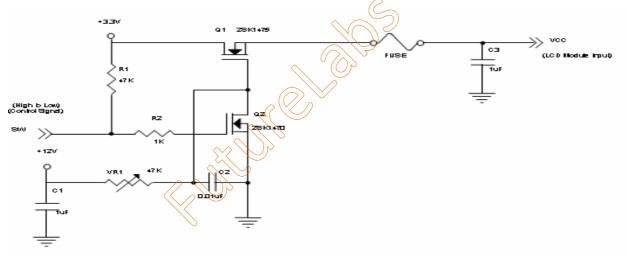
Note (1) Temperature and relative humidity range is shown in the figure below.

Note (2) 90 %RH Max. (Ta < 40°C).

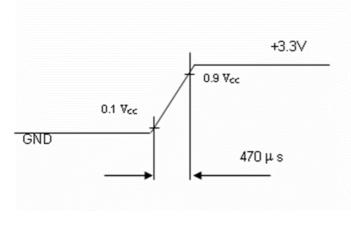
Note (3) Wet-bulb temperature should be 39° C Max.

Note (4): iF you LCD in close environment suitable venting on the system cover could be helpful for cooling

Note (5): It is better to adapt Active cooling fan system especially for high luminance model


3. ELECTRICAL CHARACTERISTICS

3.1 LCM Power Specification


Parameter	Symphol		Value			
	Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage	VCC	3.0	3.3	3.6	V	
Ripple Voltage	VRP			100	mVp-p	
Rush Current	IRUSH			2.0	А	(2)
Power Supply Current White patten	ICC		800	960	mA	(3)a
Power Supply Current Black patten	ICC		670	800	mA	(3)b
LVDS differential input voltage	Vid	200		600	mV	
LVDS common input voltage	VIC	1.0	1.2	1.4		
Differential Input Voltage for LVDS Receiver Threshold "H" Level	VIH			100	mV	
Differential Input Voltage for LVDS Receiver Threshold "L" Level	VIL	-100	<u> </u>		mV	
Teminating Resistor	RT		100	5	ohm	

Note (1) The module *should* be always operated within above ranges.

Note (2) Measurement Conditions

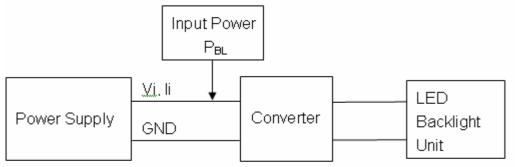
Note (3) The specified power supply current is under the conditions at V_{DD} =3.3V, Ta = 25 ± 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

a. White Pattern

b. Black Pattern

Active Area	Active Area

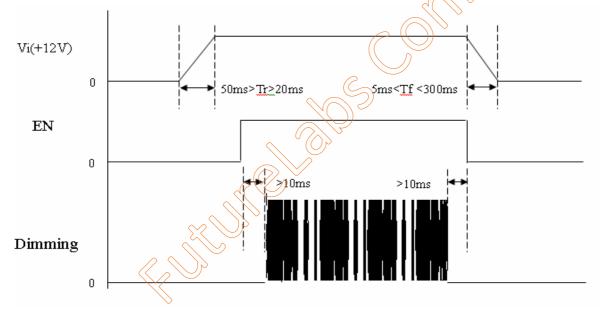
3.2 Backlight Unit

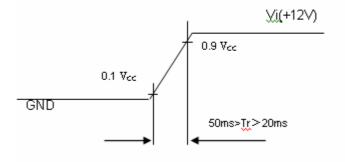

Parameter	Symbol	Min	Тур	Max	Units	Note
Converter Power Supply Voltage	Vi	10.8	12	13.2	V	
Converter Power Supply Current	li	-	1.834	-	А	@ Vi = 12V (Duty 100%)
Backlight Power Consumption	Pbl	-	17.82	-	W	@ Vi = 12V (Duty 100%)
EN Control Level Backlight on	-	3.0	3.3	5.0	V	
EN Control Level Backlight off	-	0	-	0.8	V	
PWM Dimming Control Level PWM High Level	-	3.0	3.3	5.0	V	
PWM Dimming Control Level PWM Low Level	-	0		0.15	V	
PWM Dimming Control Duty Ratio	-	1	-	100	%	@100Hz

www.futurelabs.asia

PWM Dimming Control Frequency	fpwm	100	200	20K	Hz	(2)
LED Life Time	LL	50,000	70,000		Hrs	(3)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:




Note (2) At 20k Hz PWM control frequency , duty ratio range is restricted from 20% to 100%. Note (3) The lifetime of LED is estimated data and defined as the time when it continues to operate under

the conditions at Ta = 25 ±2 $^{\circ}$ C and Duty 100% until the brightness becomes \leq 50% of its original value. Operating LED under high temperature environment will reduce life time and lead to color shift.

Power sequence and control signal timing are shown in the following figure

Note : While system is turned ON or OFF, the power sequences must follow as below descriptions Turn ON sequence: $Vi(+12V) \rightarrow EN \rightarrow Dimming Turn OFF$ sequence: $Dimming \rightarrow EN \rightarrow Vi(+12V)$ Note (4)

3.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

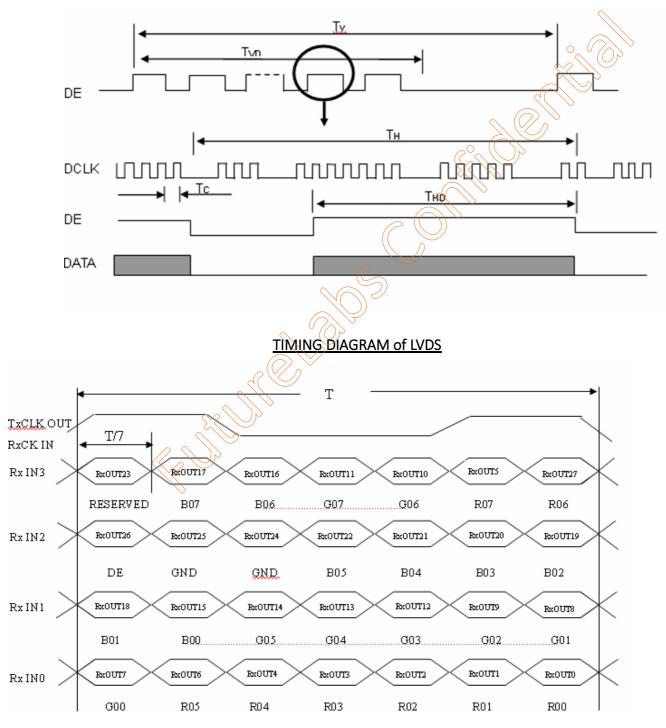
														_									\sum		
											Data Signal														
	Color		Red					Green					Blue												
	<u> </u>	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B 5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Basic	Green Blue	0	0	0	0 0	0 0	0	0	0	1 0	1 0	1 0	1 0	1	1	1 0	1	Q	0	0	0 1	0	0	0 1	0 1
		-				-	-	-	0	-	-	-	-	-	-		$(\cap$								
Colors	Cyan Magenta	0	0	0	0 1	0	0	0	0 1	1 0	1 0	1 0	1 0	1	1	1 0	1	\mathcal{Y}	1	1 1	1	1	1	1	1
	Yellow	I .	·	1	1	1	l .	· ·	· ·	-	1	1	-	-	2	S,			0	0			·		
	White	1	1 1	1	1	1	1 1	1 1	1	1	1	1	1 1	1 1<	1		1 1	0	1	1	0 1	0	0	0 1	0 1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(0) / Dark Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0
	Red(2)	l o	0	0	0	0	0		o	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray								!				X											.		
Scale	:	:		:	:	:	1		:	:	2			1:	:		:	:	:	1	:	:		:	:
Of	Red(252)	. 1	· 1	· 1	: 1	1	1	0	<u>.</u>	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	: 0
Red	Red(252)			1	1	1		1	0	0	0	0	Ő	0	0	0	ŏ	0	Ő	lő	Ő	Ő	0	Ő	ŏ
	Red(252)		1		1	1		$\frac{1}{1}$	T.	0	0	õ	õ	Ō	Ō	Ő	Ő	ŏ	õ	Ō	õ	ŏ	Ő	õ	ŏ
	Green(0)/Dark	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	lŏ	ŏ	ŏ	ŏ	ŏ	õ	ŏ	õ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	1	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
	Green(2)	0	0	0	0		Ø	00	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray	:					(()	Y	:																	
Scale	:					$\langle \rangle$:		:	:		:		:	
Of	Green(252)	0	0	0	0	\dot{b}	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(252)	Ō	0	Ó	Ô	0	Ō	Ō	0	1	1	1	1	1	1	1	0	0	Ō	Ō	Ō	Ō	Ō	0	Ō
	Green(252)	00	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	Ø	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Dide	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1)0: Low Level Voltage, 1: High Level Voltage

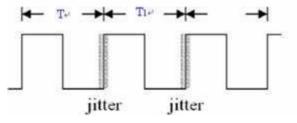
4. SIGNAL CHARACTERISTICS

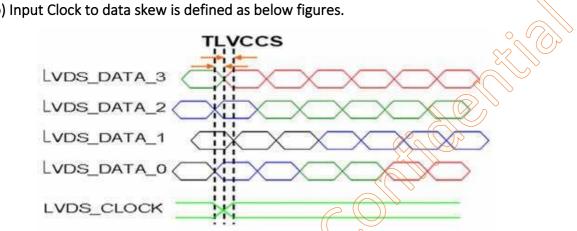
4.1 Interface Timing

4.1.1 Timing Characteristics:

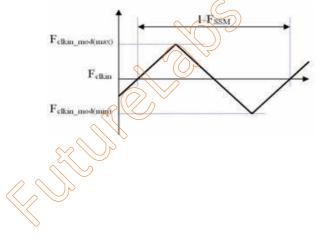

					\sim		
Parameter	ltem	Symbol	Min.	Typ.	Max.	Unit	Note
	Frequency	Fc	53.35	65	80	MHz	
	Period	Тс	12.5	15.38	18.75	ns	
	Input cycle to cycle jitter	Trcl			200	ns	(a)
LVDS Clock	Input Clock to data skew	TLVCCS	-0.02*Tc	-	0.02*Tc	ps	(b)
	Spread spectrum modulation range	Fclkin_mod	-	-	1.02*Fc	MHz	
	Spread spectrum modulation frequency	Fssm			200	KHz	(c)
	Frame Rate	Fr	55	60	70	Hz	Tv=Tvd+Tvb
Vertical Display Torm	Total	Tv	780	806	840	Th	
Vertical Display Term	Active Display	Tvd	768	768	768	Th	
	Blanking	Tvb	Tv-Tvd	38	Tv-Tvd	Th	
	Total	Th	1240	1344	1360	Тс	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	1024	1024	1024	Тс	
	Blanking	Thb	Th-Thd	320	Th-Thd	Тс	

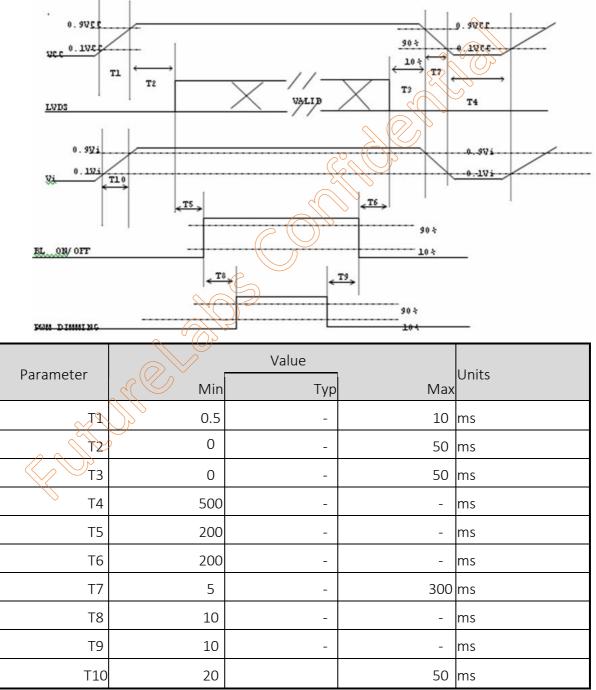
Note (1) DE Mode only, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.


(2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally


INPUT SIGNAL TIMING DIAGRAM

Note (a) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I T1 - TI




Note (b) Input Clock to data skew is defined as below figures.

Note (c) The SSCG (Spread spectrum clock generator) is defined as below figures.

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF sequence

Note (1) Please avoid floating state of interface signal at invalid period.

Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.

Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid.

The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

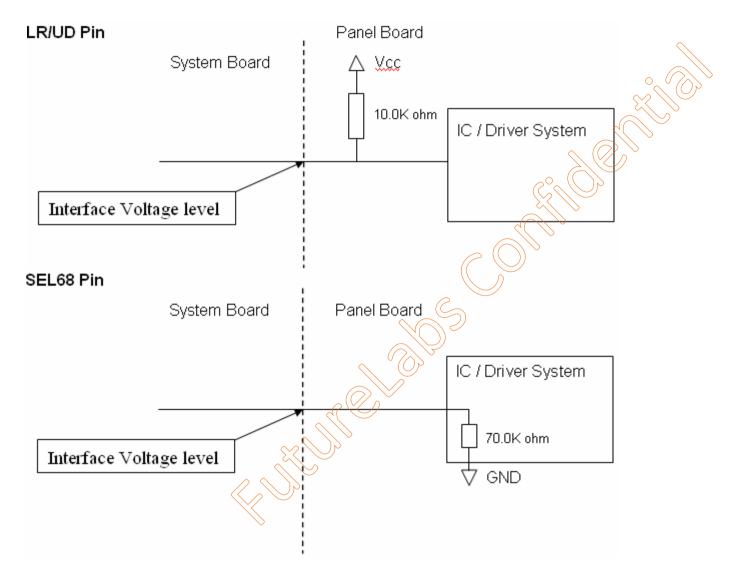
4.1.3 SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction of scan.

Fig. 1 Normal scan (pin 4, LR/UD = High or NC) Fig. 2 Reverse scan (pin 4, LR/UD = Low)

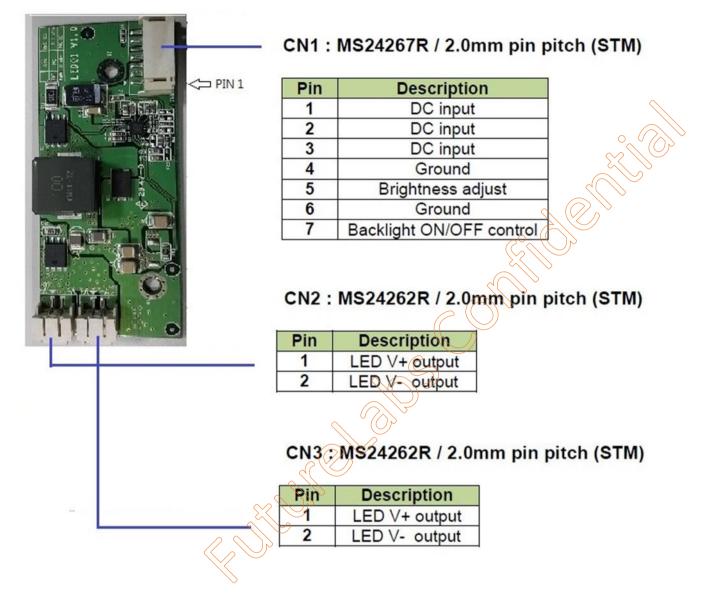
5. INTERFACE PIN DESCRIPTION

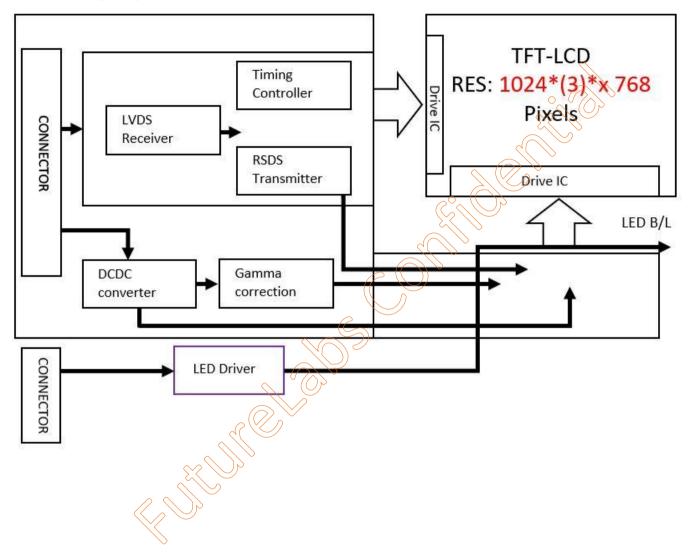
5.1 LCM Connector PIN Assignment


Pin No.	Symbol	Function	Polarity	Note
1	VCC	Power Supply +3.3V(typical)		
2	VCC	Power Supply +3.3V(typical)		
3	GND	Ground		
4	LR/UD	Reverse Scan Control		Note (3)
		H or NC = Normal Mode.		
		L = Horizontal / Vertical Reverse Scan.		
5	RXO-	LVDS Differential Data Input	Negative	
6	RXO+	LVDS Differential Data Input	Positive	
7	GND	Ground		
8	RX1-	LVDS Differential Data Input	Negative 📿	
9	RX1+	LVDS Differential Data Input	Positive	
10	GND	Ground		
11	RX2-	LVDS Differential Data Input	Negative	
12	RX2+	LVDS Differential Data Input	Positive	
13	GND	Ground		
14	RXCLK-	LVDS Differential Clock Input	Negative	
15	RXCLK+	LVDS Differential Clock Input	Positive	
16	GND	Ground		
17	RX3-	LVDS Differential Data Input	Negative	
18	RX3+	LVDS Differential Data Input	Positive	
19	GND	Ground		
20	SEL68	LVDS ⁶ /8 bits elect function control,		Note (3)
		High 6bit Input Mode		
		Low or NC 8bit Input Mode		

Note (1) Connector Part No.: Cvilux CID520D1HR0-NH or equivalent.

Note (2) User's connector Part No.: Hirose DF14-20S-1.25C or equivalent.


Note (3) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connection".

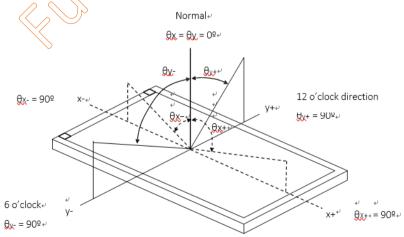

5.2 Backlight and LED Driver Connector PIN Assignment

6. BLOCK DIAGRAM

The following diagram shows the functional block of the TFT module:

7. OPTICAL CHARACTERISTIC

The optical characteristics are measured under stable conditions at room temperature.

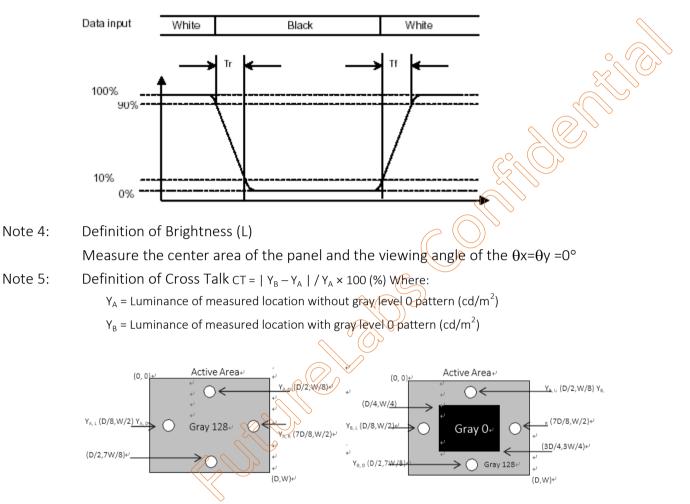

lte	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		1300	2000		-	(2)
Response Time		TR+TF		-	21	35	ms	(3)
Uniformity		δW		75	80		%	(6)
Center Lumina	nce of White	LC		900	1000	-	cd/m ²	(4)
White Variation	n	äW		-	1.25	1.33	-	(6)
		Rx			0.647	\wedge	-	
	Red	Ry			0.338		-	
		Gx			0.321	$\langle \rangle \rangle$	-	
	Green	Gy	$\theta_X=0^\circ, \ \theta_Y=0^\circ$ Viewing angle at		0.606		-	
	-	Bx	normal direction	-0.05	0.157	+0.05	-	
Chromaticity	Blue	Ву	~~~~		0.039		-	(6)
		Wx) X		0.313		-	
	White	Wy		\sim	0.329		-	
		θχ+		80	88	-		
Viewing	Horizontal	θ _X -		80	88	-		
Angle	Vertical	θγ+	CR=10	80	88	-	Deg.	(1)
	Vertical	θγ-		80	88	-		

The following optical specifications shall be measured in a darkroom or equivalent state (ambient luminance $\leq 1 \ln x$, and at room temperature).

The room temperature is $25^{\circ}C\pm 2^{\circ}C$.

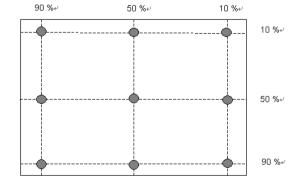
Note 1: Definition of Viewing Angle

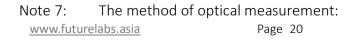
Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or the vertical clock direction with respect to the optical axis which is normal to the LCD surface


Note 2: Definition of Contrast Ratio (CR)

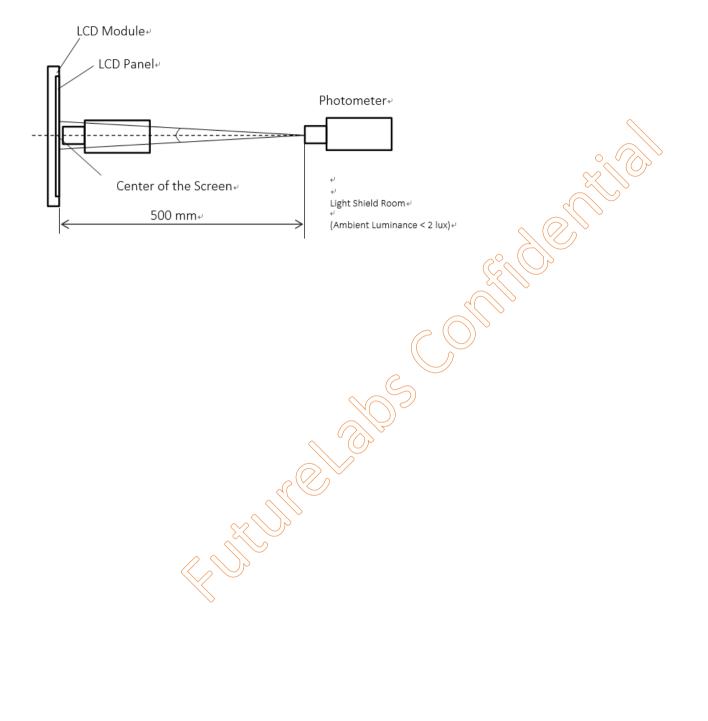
Measure the viewing angle of Θ = 0 and at the center of the LCD surface. Luminance with all pixels in white state divide by Luminance with all pixels in Black state

Note 3 Definition of Response Time:


The response time is set initially by defining the "Rising Time (Tr)" and the "Falling Time (Tf)" respectively. The response time interval is between 10% and 90% of amplitudes, please refer the figure to the followings:



Note 6: Definition of White Variation (δ W):


Measure the luminance of gray level 255 at 9 points

δW = Maximum [L (1), L (2),~, L (8),L (9)] / Minimum [L (1), L (2) ~, L (8),L (9)]

B. Touch Screen specification

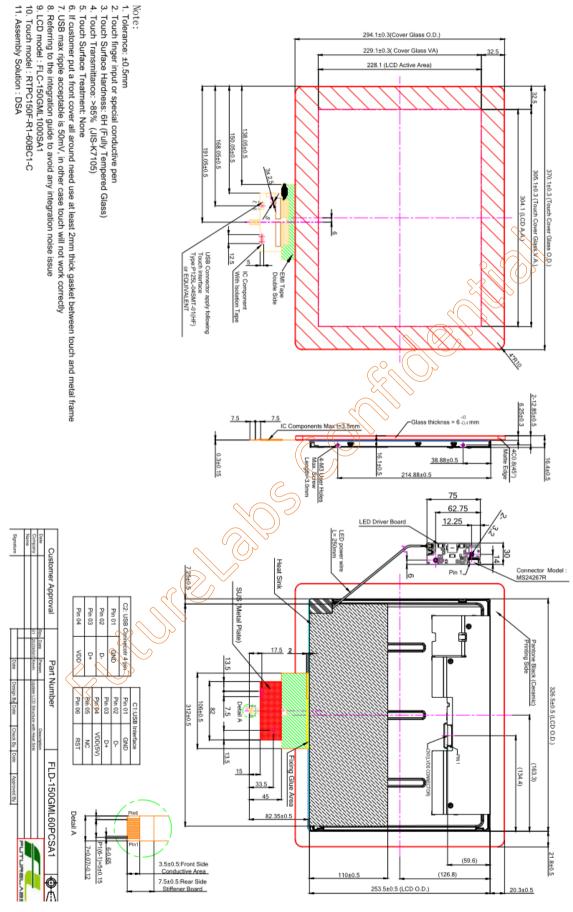
1. Environmental Specification

Specification	Value	Remarks
Operating Temperature	-20ºC ~ 70ºC	
Storage Temperature	-40ºC ~ 80ºC	
Operating Humidity	20% ~ 90%RH	
Storage Humidity	10% ~ 90%RH	

2. Mechanical Specification

Specification	Value
Operating Life (Finger input)	10 ⁷ times
Light Transmittance	>86% Min. (JIS K-7105) with glass
Surface hardness	Depending by the cover Lens Material Customer choose
FPC Peeling Force	5N Max

3.COMBO Type Controller USB / I2C


Parameters (C	Features				
Circuit Board Dimension	Refer to drawings				
Channels of Panel	Based on Sensor Design				
Input Voltage	Typ 5V for USB- 5V/3,3V (Min 3,2V) for I2C				
Linearity(Note 1)	Single Line drawing accuracy : Up to 1pt +/- 1mm offset /10mm				
	Single Touch (point) accuracy : Up to 1pt +/- 1mm				
Interface	USB: 2.0(Below) Full Speed				
	I2C:100K/400K Hz				
Resolution	16496×16496 resolution				
	Active Mode: <110mA				
	Idle Mode : <55mA				
Power consumption(mA)	Sleep Mode :< 10mA				
	(Operation Mode :Active Mode only)				
Report rate(points/sec) Note(2)	>100 Hz				
Response time	Average < 25 ms				

Note (1): Depending by Sensor design and other parameters, Refer to Windows 8 Logo regulation if need to follow min spec

Note (2): Report rate will vary by channel number, cover thickness, number of fingers and other parameters

8. DIMENSION AND DRAWING

Front VIEW

Back VIEW

9. PRECAUTION AND PRODUCT HANDLING

- Do not apply the external force such as bending or twisting to the LCD panel and backlight during assembly.
- Do not insert and plug out the input connector while the LCD panelis operating.
- Do not take apart the panel or frame from LCD module assembly or insert anything into the backlight unit
- Do not keep , ttern in a long period of time, it may cause image sticking on LCD panel. Can use shuffle content periodically if fixed pattern is displayed on the screen.
- Do not touch the display area with bare hands, this will stain the display area.
- Pay attention to handle lead wire of backlight, that is not tugged in connect with LED driver.
- Do not change variable resistance settings in LCD panel, it may cause not satisfy of LCD characteristics specification.
- The surface of LCD panel's polarizer is very soft and easily scratched, please use a very soft dry cloth without chemicals for cleaning.
- To avoid the static electricity to damage the CMOS LSI, the operator should be grounded when in contact with the LCD panel, and also to all electrical equipment.
- Need to follow the correct power frequency when LCD panel is connecting and operating, this can avoid damage to CMOS LSI during latch-up.
- Need to store the LCD panel indoor without the exposure of sunlight where the temperature is 25°C ± 5°C and the humidity is below 60% RH.