

PRODUCT SPECIFICATION

PART NUMBER # REV: FLC-101HML2000SA1#00
DESCRIPTION: 10.1"W TFT 1280x800 TFT Full View 500CD with LVDS interface

	Preliminary Specificat Approved Specification	~ 1/)
Customer Name:		
Signa	ature:	Date:
	Jr I	
PREPARED BY	REVIEWED BY	SIGNATURE DATE
Mia Huang	David	2020/09/09

Revision History

Version	Date	Page	Description	Note
V1.0	2020/09/09		First Edition	
V1.1	2020/09/10		Update Edition Power cons	
				EX JO
			(

Table of Content

1. GENERAL DESCRIPTION	4
1.1 Description	
2. ABSOLUTE MAXIMUM RATING	
2.1 Electrical Absolute Rating	
3. FLECTRICAL CHARACTERISTICS	6
2.1 Electrical Absolute Rating	
4 INTERFACE TIMING	10
4.1 INTERFACE TIMING	
5. INTERFACE PIN DESCRIPTION	12
5.1 LCM Connector PIN Assignment	12
6. BLOCK DIAGRAM	15
7. OPTICAL CHARACTERISTIC	
7. OPTICAL CHARACTERISTIC	
8. DIMENSION AND DRAWING	19
9. RELIABILITY TEST CRITERIA	20
10. DEFCALITION AND DEODLICT HANDLING	2.
	23

1. GENERAL DESCRIPTION

1.1 Description

10.1" is a Color Active Matrix Liquid Crystal Display Module composed of a TFT LCD panel and LED backlight system. The screen format is intended to support the WXGA, 1280 x 800 screen and 262K/16.2M colors (6-bits colors with FRC).

1.2 Product Summary

The following items are summary on the table under Ta=25 °C condition:

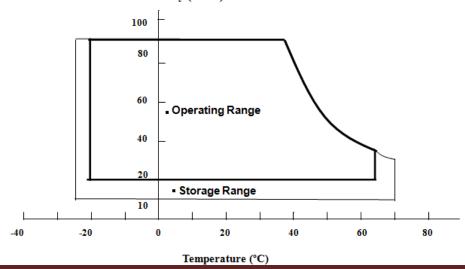
No.	ltem	Specification	Unit
1	Display Size	10.1"	Inch
2	Pixel Number	1280 (H) × RGB x 800 (V)	Pixels
3	Outline Dimension	230.7 (H)×152.55 (V)×6.5(D)	mm
4	Active Area	(216,96 (H) × 135.6 (V)	mm
5	Display Colors	16.2M / 262K	
6	Pixel Arrangement	RGB vertical stripe	
7	Display Mode	Transmissive mode / Normally black	
8	Electrical Interface	LVDS	
9	Surface Treatment	Anti-Glare 3H	
10	Brightness	500 (Typ.)	cd/m2
11	Contrast Ratio	800 (Typ.)	
12	Total Power	6.2	W
	onsumption (Typ)		

2. ABSOLUTE MAXIMUM RATING

2.1 Electrical Absolute Rating

ltare	ltom Sumbol		Values			
ltem	Symbol	Min	Max.	Unit	Note	
Power supply voltage	VCC	-0.3	4		>	
Converter Voltage	Vi	-0.3	18	EX May		
Enable Voltage	EN		5.5			
Backlight Adjust	ADJ		5.5	> V		

Note Permanent damage to the device may occur if max. values are exceeded. Function speciation should be restricted to the conditions described under normal operating conditions.

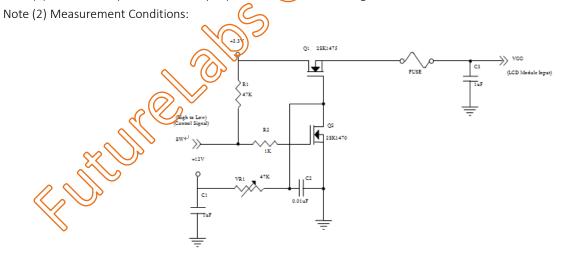

2.2 Environment Absolute Rating

lk	C l l	Values		11	NI-4-
ltem	Symbol	Min Typ	Max.	Unit	Note
Operating	Тор	-20	65	°C	
Temperature	ТОР	-20	0.5	C	
Storage	Tota	125	70	°C	
Temperature	Tstg		70		

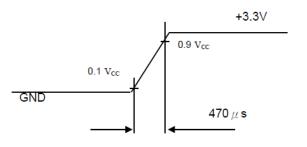
Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta < 40 $^{\circ}$ C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 39 °C).
- (c) No condensation
- (d) for Module only

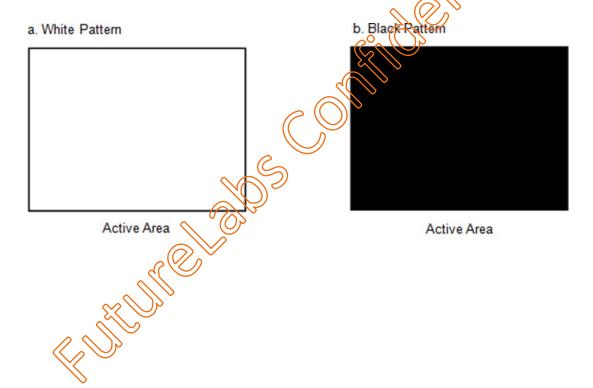
Relative Humidity (%RH)


3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE


				Value			
Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
Power Supply Voltage		V _{CC}	3.0	3.3	3.6	V	(1)
Power Supply Ripple Volt	age	V_{RP}		<	100	mVp-p	
Rush Current	Rush Current		-	ō. (?)	1.5	А	(2)
Dower Cumply Current	White			265	320	mA	
Power Supply Current	Black	Icc		(210)	260	mA	(3)
LVDS differential input voltage		V _{ID}	200	<u> </u>	600	mV	
LVDS common input voltage		V _{IC}	co.1.0>	1.2	1.4	V	-
Logic High Input Voltage		V _{IH}	ES 110		100	mV	
Logic Low Input Voltage		VIL	100			mV	
LVDS terminating resistor		C RO	-	100	-	ohm	

Note (1) The assembly should be always operated within above ranges.

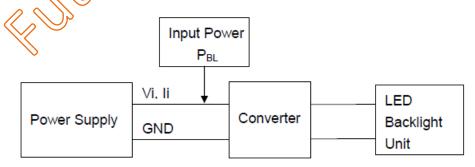

Ta = 25 ± 2 ºC

Note (3) The specified power supply current is under the conditions at VDD=3.3V, $Ta=25 \pm 2$ $^{\circ}$ C Current and tv=60Hz, whereas a power dissipation check pattern below is displayed.

3.2 Backlight Unit

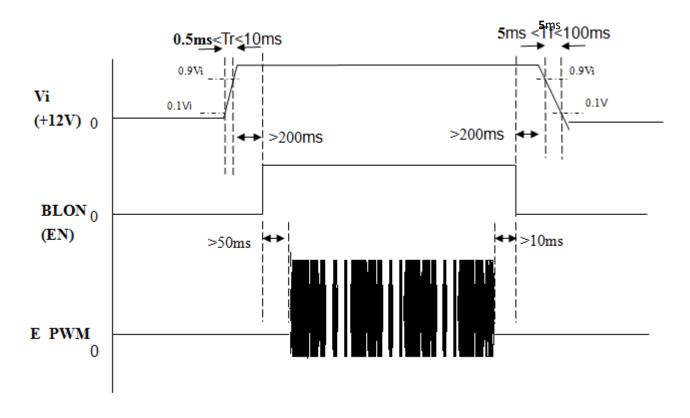
Parameter guideline for LED driving is under stable conditions at 25°C (Room Temperature):

				Value			
Parameter	•	Symbol	Min.	Тур.	Max.	Unit	Note
Converter Power Supp	oly Voltage	V_{i}	10.8	12.0	13.2	V	
Converter Power Supp	oly Current	li		0.45		А	@ Vi = 12V (Duty 100%)
Backlight Power Cons	sumption	PBL	ı	5.3	5.8	W	@ Vi = 12V (Duty 100%)
	Backlight on		2.5	(/3,3)	5.0	V	
EN Control Level	Backlight off	-	co.0()	>	0.8	V	
PWM Control Level	PWM High Level		2.5	3.3	5.0	V	
P VVIVI CONTROL Level	PWM Low Level	- (0	-	0.15	V	
PWM Control Duty	/ Ratio		1	-	100	%	@200Hz
PWM Control Freq	uency	føw M	190	200	20k	Hz	(2)
LED LifeTim	e O	LL	50,000	-	-	Hrs	(3)


Note (1) LED current is measured by utilizing a fight frequency current meter as shown below:

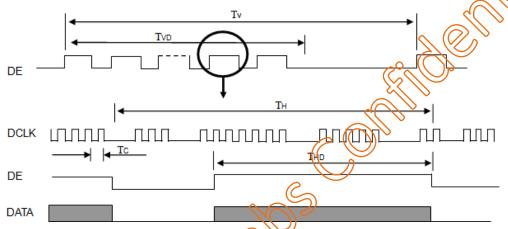
Note (2)At 200 Hz PWM control frequency duty ratio range is restricted from 1% to 100%

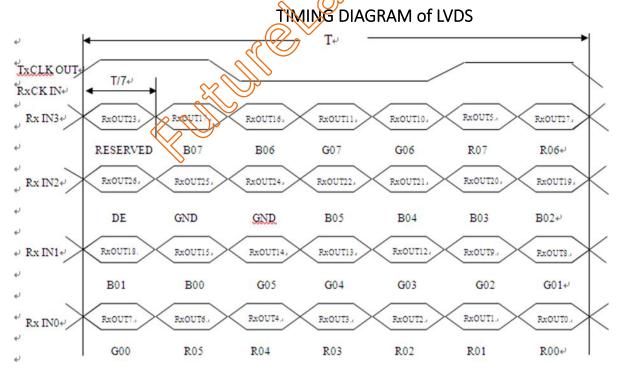
Note (3) The lifetime of LED is estimated at and defined as the time when it continues to operate under the conditions at


Ta = 25 ± 2 °C and Duty=100% until the brightness becomes \leq 50% of its original value.

Operating LED under high temperature environment will reduce lifetime and lead to color shift.

Power sequence and control signal timing are shown in the following figure

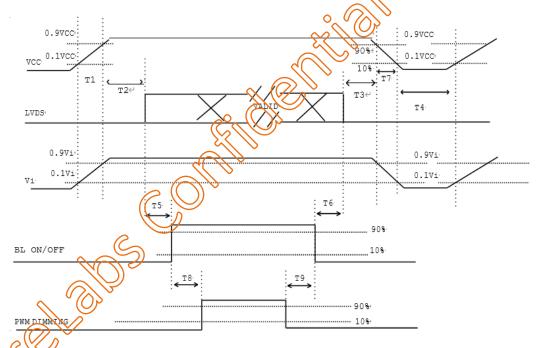

Note: While system is turned ON or OFF, the power sequences must follow as below descriptions Turn ON sequence: $Vi(+12V) \rightarrow BLON \rightarrow E_PWM$ signal Turn OFF sequence: E_PWM signal $\rightarrow BLON \rightarrow Vi(+12V)$


4. INTERFACE TIMING

4.1 INPUT SIGNAL TIMING SPECIFICATIONS

Signal	ltem	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Pixel Clock	1/Tc	60.40	71.1	74.7	MHz	-
	Vertical Total Time	T _V	810	823	829	Тн	-
	Vertical Address Time	T _{VD}	800	800	800	Тн	-
DE	Horizontal Total Time	Тн	1362	1440	1480	Ţ <u>c</u>	-
	Horizontal Address Time	T _{HD}	1280	1280	1280°		-

INPUT SIGNAL FIMING DIAGRAM



4.2 Power ON/OFF Sequence

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram

below.

Note: (1) Please avoid floating state of interface signal at invalid period.

(2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V

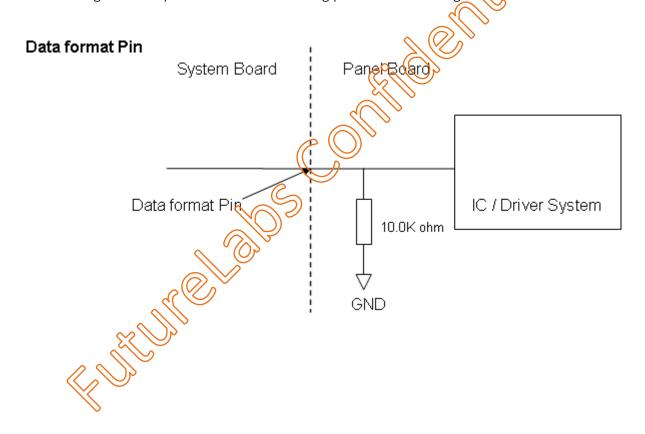
(3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Parameter	Min	Тур	Max	Units
T1	0.5	-	10	ms
T2	0	-	50	ms
Т3	0	-	50	ms
T4	500	-	-	ms
T5	200	-	-	ms
Т6	200	-	-	ms
T7	5	-	300	ms
Т8	10	-	-	ms
Т9	10	-	-	ms

5. INTERFACE PIN DESCRIPTION

5.1 LCM Connector PIN Assignment

Pin No.	Symbol	Function	Polarity	Note
1	VCCS	Power Supply +3.3V(typical)		
2	VCCS	Power Supply +3.3V(typical)		
3	VCCS	Power Supply +3.3V(typical)		
4	Data format	L or NC : 8bit Input Mode H : 6bit Input Mode		Note (2),Note(3)
5	NC	No Conncetion		
6	NC	No Conncetion		
7	NC	No Conncetion		
8	Rxin0-	LVDS Differential Data Input	Negative	
9	Rxin0+	LVDS Differential Data Input	Positive	
10	VSS	Ground		
11	Rxin1-	LVDS Differential Data Input	Ovegative	
12	Rxin1+	LVDS Differential Data Input	Positive	
13	VSS	Ground		
14	Rxin2-	LVDS Differential Data Input	Negative	
15	Rxin2+	LVDS Differential Date Mout	Positive	
16	VSS	Ground		
17	RxCLK-	LVDS Differential Clock input	Negative	
18	RxCLK+	LVDS Differential Olock Input	Positive	
19	VSS	Ground		
20	Rxin3-	LV Differential Data Input	Negative	
21	Rxin3+	(LVDS Differential Data Input	Positive	
22	VSS	Ground		
23	NC	No Conncetion (Reserve)		
24	Me	No Conncetion (Reserve)		
25	(VSD)	Ground		
26	VSS	Ground		
(VP)	LED_PWM	PWM Control Signal od LED Converter		
28	LED_EN	Enable Control Signal od LED Converter		
29	LED_GND	LED Ground		
30	LED_GND	LED Ground		
31	LED_GND	LED Ground		



32	LED_GND	LED Ground	
33	LED_GND	LED Ground	
34	NC	No Conncetion (Reserve)	
35	NC	No Conncetion (Reserve)	
36	LED_VCCS	LED Power Supply	
37	LED_VCCS	LED Power Supply	
38	LED_VCCS	LED Power Supply	
39	LED_VCCS	LED Power Supply	
40	LED_VCCS	LED Power Supply	

Note (1) Connector Part No.: I-PEX 20455-040E-12 or Tyco_5-2069716-3.

Note (2) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connected".

Note (3) Interface optional pin has internal scheme as following diagram, Costomershould keep the interface voltage level requirement which including panel board loading as below.

5.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color.

The table below provides the assignment of color versus data input.

⊬ Color		Data Signal [□]																							
		Red∈					Green₽						Blue₽ ←												
		R7	R6	R5	R4	R3	R2€	R1	R0	R7	R6	G5	G4		G2	G1	G0	R7	R64	B5	B4	B3(B2∢	B1	B0∢
ب	Blackċ	0€	0⊹	0∻	0⊹	0€	0€	0∈	0€	0€	0€	0∈	0€	0€	0∻	0∈	0∈	0∈	0∻	0∈	0∻	0∻	0∻	0∈	0€
↩	Red∈	1∜	1∜	1∻	1∜	1€	1∜	1∻	1∻	0€	0€	0∈	0⊹	0∈	0∻	0∈	0∈	0∈	0∈	0∈	0∻	0∻	0∈	0∈	0∈
↩	Green	0€	0∻	0∈	0∻	0€	0€	0∻	0€	1∻	1∻	1∻	1∜	1€	1∻	1≰	1∈	0∈	0∈	0∈	0∈	0∻	0∈	0∈	0∈
Basic∈	Blueċ□	0€	0←	0∈	0←	0€	0€	0∈	0€	0€	0€	0∈	0∈	0€	0∈	0∢	100	1∻	1∻	1∈	1∻	1∻	1∻	1∻	1∻
Colors	Cyan⊲	0€	0∻	0∈	0€	0€	0€	0∻	0€	1∜	1∻	1∻	1∜	1€	1←	17		∖ 1∈	1∻	1∻	1∻	1∻	1∻	1∻	1∻
↩	Magenta⊲	1∜	1∜	1∻	1∜	1€	1∻	1∻	1∻	0€	0€	0∈	0∈	0€	Ö 🖠	O((D)	1∻	1∻	1∈	1∻	1∻	1∻	1∻	1∈
↩	Yellow⊲	1€	1∜	1∻	1∜	1€	1∻	1∻	1∻	1∻	1∻	1∻	1∜	1←) [1	1∻	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈
↩	White⊲	1∜	1∜	1∻	1∜	1€	1€	1∻	1€	1∻	1€	1∻	1∉	1	11/	⊅ા∉	1∻	1∈	1∻	1∻	1∻	1∻	1∻	1∻	1∻.
↩	Red(0) / Dark	0€	0€	0∈	0€	0€	0€	0∈	0€	0€	0€	0÷	04	0	04	0∈	0∈	0∈	0∈	0∈	0€	0∻	0∈	0∈	0€
←	<u>Red(</u> 1)₽	0€	0€	0∈	0€	0€	0	0∻	1∻	0€	0€	Ø	(0/	94	0 €	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈
0	Red(2)⊢	0∈	0∈	0∈	0∈	0∈	0←	1∻	0∈	0∈	0	(Ô	0	0€	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈
Gray	:←	∵⊢	\leftarrow	:	:←	:←	:←	:←	:←	:(1/2	JY-	[←	:←	:←	:←	:	:←	:	:	·	(€		
Scale	:	:	:	:	:	-	:	:	:	5-		1	:	:	:	:	:	:	:	:	:	:	:	:	:
<u>Ωf</u>	Red(252)	1←	1∻	1∈	1←	1←	1←	0∈	1⊹	0	0	0∈	0∈	0∈	0∈	0∢	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈
Red∂	Red(252)-□	1∜	1∜	1∻	1∜	1€	1∜	1∻	0	0	0	0∈	0∉	0∻	0∻	0∢	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈
↩	Red(252)←	1∜	1∜	1∻	1∜	1€	1	∕1 +	(1))0ě	0€	0∈	0€	0€	0∻	0∈	0∈	0∈	0∻	0∈	0∻	0∻	0∈	0∈	0∈
₽	Green(0)/Dark	0	0€	0←	0€	0€	0	0∻	√ 0€	0∈	0€	0÷	00	0€	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∻	0∈	0∈	0∈
↩	Green(1)₽	0€	0€	0∈	0€	0€	0€	0€	0€	0€	0€	0∈	0€	0€	0∈	0∈	1∻	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈
	Green(2)←	0←	0←	0∈	0∈	06	1	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈	1∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈
Gray	←	:←	\leftarrow	:←	VA	H		:←	:←	:←	:←	:←	:←	:←	:←	:←	:←	:←	:←	:	:←	:←	.←		:←
Scale	:←	:	-	-/	2/		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
<u>Ωf</u>	Green(252)	0∈	Q÷	0<	(Ô)	0∈	0←	0∈	0∈	1←	1←	1∈	1∈	1∻	1∻	0∢	1∻	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈
Green	Green(252)√	0€	0	0∈	Ø÷	0€	0€	0∈	0€	1€	1€	1∈	1∜	1∻	1∻	1∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈
ت	<u>Green(</u> 252)∂	06		0	0∈	0€	0€	0∈	0€	1∻	1∻	1∻	1∜	1€	1∻	1∈	1∻	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈
€7	Blue(0) / Dark	0	9	0∈	0€	0	0	0	0	0€	0	0	00	0€	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0÷	0∈	0∈	0∈
€7	Blue(1)	0	0€	0∈	0€	0€	0	0∈	0€	0€	0€	0∈	0	0€	0∈	0∢	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈	1∻
Oran.	Blue(2)) ₁ O+(0←	0∈	0∈	0∈	0←	0∈	0∈	0∈	0∈	0∈	0∈	0∻	0∻	0∢	0∈	0∈	0∈	0∢	0∻	0∈	0∈	1∢	0∈
Gray	25/1	[←]	:←	:←	:←	:←	:←	:←	:←	:	:←	:	:←	:←	:	:	:←	:←	:←	:	:←		.←		:←
Scale	100				:	-	-		:	:	:	-	:	:	:	:	:	:	:	:	:	:	:	:	:
<u>Of</u>	Blue(252)	0←	0←	0	0←	0←	0←	0	0	0∈	0∈	0∈	0∈	0∈	0∈	0∈	0∈	1∈	1∈	1∈	1∈	1∻	1∻	0	1∈
Blue∉	Blue(252)	0	0	0∈	0<	0€	0	0∈	0€	0	0	0	0	0∈	0∈	0∈	0∈	1∈	1∈	1∈	1∈	1∻	1∻	1∈	0∈
↩	Blue(252)́₽	0	0€	0∈	0€	0€	0	0∈	0€	0€	0€	0∈	0€	0€	0∈	0∈	0∈	1∈	1∻	1∈	1∻	1∻	1∻	1∈	1∈

Note (1)0: Low Level Voltage, 1: High Level Voltage

6. BLOCK DIAGRAM

Timing Controller

RESDS

Transmitter

Drive IC

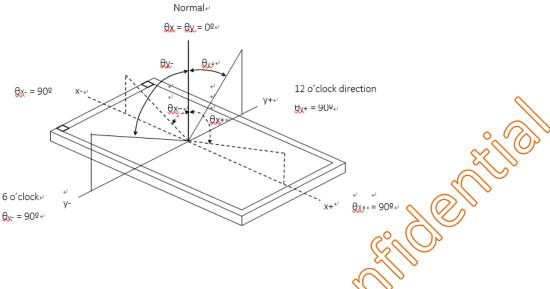
LED B/L

LED Driver

7. OPTICAL CHARACTERISTIC

The optical characteristics are measured under stable conditions at room temperature.

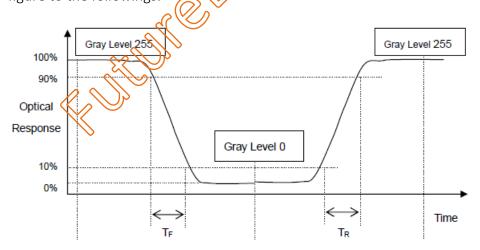
lte	em	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		600	800		-	(2)(5)
Response Time		TR		-	14	17	ms	
Response fille		TF		-	11	4	ms	(3)
Center Lumina	nce of White	Lc	θ _X =0°, θγ =0°	400	500 💍		cd/m2	(4)(5)
White Variation	า	δW	Viewing angle at	70	33		-	(5)(6)
		Rx	normal direction		0.693		-	
	Red	Ry			0 340		-	
	Green	Gx	<u>E</u>		0.316		-	
		Gy			0.591		-	
Chromaticity	Blue	Bx		Тур.	0.154	Тур.	-	(1)
		Ву		-0.05	0.123	+0.05	-	(5)
		Wx	S		0.313		_	
	White	Wy 🕜			0.329		-	
Viewing Angle		OX t	P	80	85	ı		
	Horizontal	C CO		80	85	-		
	1000	θγ+	CR≥10	80	85	-	Deg.	(1)(5)
	Vertical	θγ-		80	85	-		


The following optical specifications shall be measured in a darkroom or equivalent state (ambient luminance <2 lux, and at room temperature).

The room temperature is 25°C±2°C

Note 1: Definition of Viewing Angle

Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or the vertical clock direction with respect to the optical axis which is normal to the LCD surface

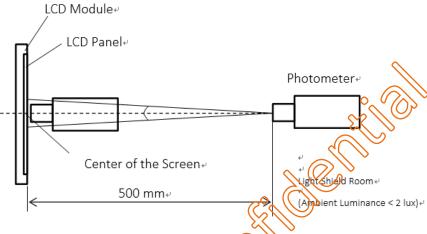


Note 2: Definition of Contrast Ratio (CR)

Measure the viewing angle of Θ = 0 and at the center of the LCD surface. Luminance with all pixels in white state divide by Luminance with all pixels in Black state

Note 3 Definition of Response Time:

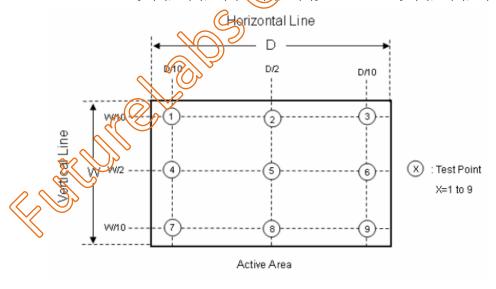
The response time is set initially by defining the "Rising Time (Tr)" and the "Falling Time (Tf)" respectively. The response time interval is between 10% and 90% of amplitudes, please refer the figure to the followings:



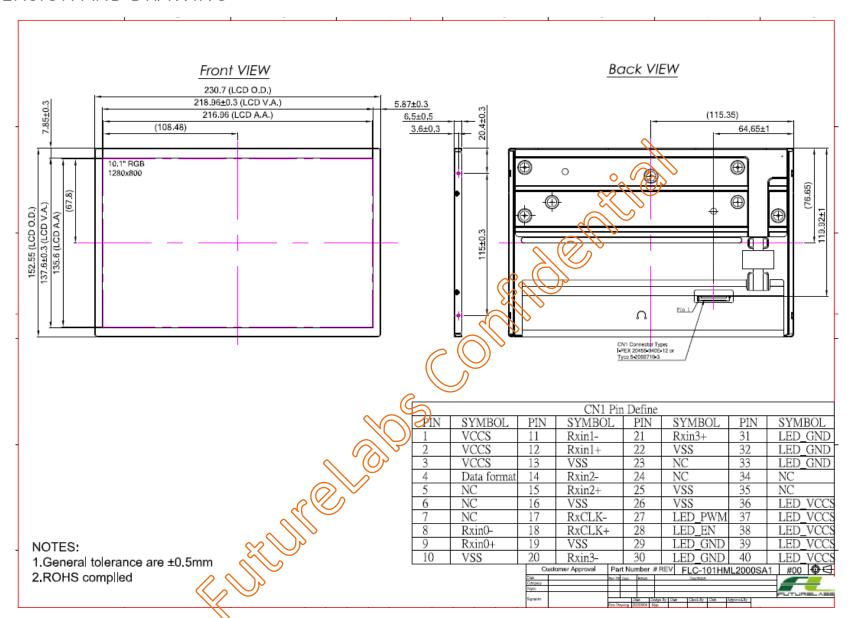
Note 4: Definition of Brightness (Lc)

Measure the center area of the panel and the viewing angle of the $\theta x = \theta y = 0^{\circ}$

Note 5: The method of optical measurement:



Note 6: Definition of White Variation (δW):


Measure the luminance of gray level 265 at 9 points

 $\delta W = Maximum [L (1), L (2), L (3), L (8)] L (9)] / Minimum [L (1), L (2), L (3)... L (4), L (5)]$

8. DIMENSION AND DRAWING

9. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note
High Temperature Storage Test	70ºC, 240 hours	/1\
Low Temperature Storage Test	-25ºC, 240 hours	(1)
Thermal Shock Storage Test	-20ºC, 0.5hour←→70°C, 0.5hour; 100cycles, 1hour/cycle	(2) (4)
High Temperature Operation Test	65ºC, 240 hours	(5)
Low Temperature Operation Test	-20ºC, 240 hours	
		(1)
High Temperature & High Humidity Operation Test	60ºC, 90%RH, 240hours	(2) (4)
Operation rest		(6)
ESD Test (Operation)	150pF, 330Ω, 1 sec/cycle Condition 1 : paner contact, ±8 KV Condition 2 : panel non-contact ±15 KV	(1)
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z.	(3)(4)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	(3)(4)

- Note (1) There should be no condensation on the surface of panel during test.
- Note (2) Temperature of panel display surface area should be 85 °C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.
- Note (6) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at compensature.

10. PRECAUTION AND PRODUCT HANDLING

- Do not apply the external force such as bending or twisting to the LCD panel and backlight during assembly.
- Do not insert and plug out the input connector while the LCD panel is operating.
- Do not take apart the panel or frame from LCD module assembly or insert anything into the backlight unit.
- Do not keep the same pattern in a long period of time, it may cause image sticking on LCD panel. Can use shuffle content periodically if fixed pattern is displayed on the screen.
- Do not touch the display area with bare hands, this will stain the display area.
- Pay attention to handle lead wire of backlight, that is not tugged in connect with LED driver.
- Do not change variable resistance settings in Lett paner, it may cause not satisfy of LCD characteristics specification.
- The surface of LCD panel's polarizer is very soft and easily scratched, please use a very soft dry cloth without chemicals for gleaning.
- To avoid the static electricity to damage the CMOS LSI, the operator should be grounded when in contact with the LCD panel, and also to all electrical equipment.
- Need to follow the correct power frequency when LCD panel is connecting and operating, this can avoid damage to CMOS LSI during latch-up.
- Need to store the LCD panel indoor without the exposure of sunlight where the temperature is 25°C and the humidity is below 60% RH.